

University of Colorado, Boulder

This article raises some questions about the usefulness of meta-analysis as a means of reviewing quantitative research in the social sciences. When a meta-analytic model for SAT coaching is used to predict results from future studies, the amount of prediction error is quite large. Interpretations of meta-analytic regressions and quantifications of program and study characteristics are shown to be equivocal. The match between the assumptions of the meta-analytic model and the data from SAT coaching studies is not good, making statistical inferences problematic. Researcher subjectivity is no less problematic in the context of a meta-analysis than in a narrative review.

Keywords: meta-analysis; literature review; SAT coaching; statistical inference

A : \mathbf{Q} : The author thanks David Freedman and Lorrie Shepard for helpful comments on earlier versions of this article.

A A 2005 87-127 D :10.1177/0193841 04272555 2005t Ot J F F

 $\begin{array}{c} {}^{\prime} {}^{\bullet} {$

r = 1986; r = 1988; B = 2004; B = 1 = 2003).

 $\frac{1}{2} \frac{1}{2} \frac{1}$

		•	P ed c	ed C ac 🦣 Ei	ffec F Bec e	(1990)
Re	Sd	C ac 🔮 Effec	M de A	M de B	M de C	M de D
Н ее (1984)	SAT-V	57	30	11.6	12.9	24.5
	SAT-M	37	30	25.5	1.2	35.8
Fae (1987)	SAT-V	16	30	11.6	1.9	0.8
	SAT-M	16	30	25.5	13.6	12.1
Ha e (1988)	SAT-M	21	30	25.5	14.5	8.1
W a (1988)	SAT-V	11	30	11.6	2.7	0.5
	SAT-M	16	30	25.5	14.4	11.8
S edec (1989)	SAT-V	0	30	11.6	2.7	0.2

76 TABLE 1: Observed and Predicted Effects From New Coaching Studies

 $\begin{array}{c} \mathbf{v}_{0} & \mathbf{v}_{1} & \mathbf{v$

Re	adS d	SAT-M	SAT-V
A de	a a d P e (1980)		
Sc	A		22
Sc	В		9
Sc	С		14
Sc	D		14
Sc	E		1
Sc	F		14
Sc	G		18
Sc	Н		1
Еa	a d P e (1973)		
G	A	12	
G	В	25	
G	C	11	
Lace	e e (1985)	8	0
R be	adOee (1966)		
Sc	A		17
Sc	В	12	
Z a	(1988)	51	14
Med a	effec e a e	12	14

TABLE 4: Estimated Coaching Effects in Randomized Studies

TABLE 5:

A mente a for the top for a the man of and are pa

μ.

Calculating effect sizes for meta-analytic regressions. $1 = \frac{1}{12} \cdot \frac{1}{15}$ Calculating effect sizes for meta-analytic regressions. 1. $h = h_1 + h_1$ $h = h_1$

$$\begin{array}{c} \cdot t A \mathbf{s} \cdot \mathbf{h}_{\mathbf{r}} & = \mathbf{h}_{\mathbf{r}} \cdot \mathbf{o}^{\mathbf{n}} \mathbf{e}^{\mathbf{n}} & \mathbf{h}_{\mathbf{r}} \cdot \mathbf{h}_{\mathbf{r}} \cdot \mathbf{h}_{\mathbf{r}} & \mathbf{h}_{\mathbf{r}} \cdot \mathbf{h}_{\mathbf{r}} \cdot \mathbf{h}_{\mathbf{r}} & \mathbf{h}_{\mathbf{r$$

 $\mathbf{A}^{*} \textbf{-} \textbf{-} \textbf{-} \overset{*}{\leftarrow} \textbf{-}_{\mathbf{0}} \textbf{-} \textbf{-} (h),$

replace " " " " " " " " " " " " "

A. t lo h l. A find the total dependence of total depende • _t•,۳ • ,

$$X_{hij}^{C} z N\left(\mu_{hi}^{C}, \sigma_{hi}^{2}\right) and Y_{hij}^{C} z N\left(\nu_{hi}^{C}, \sigma_{hi}^{2}\right),$$
(4)

Meel-M M Merten ., $X_{hij}^U \operatorname{z} N(\mu_{hi}^U, \sigma_{hi}^2)$ and $Y_{hij}^U \operatorname{z} N(\nu_{hi}^U, \sigma_{hi}^2)$. (5)

 $\begin{array}{c} B & \stackrel{*}{\leftarrow} & \stackrel{*}{$

 $\frac{2}{1} + \frac{1}{1} + \frac{1}$

 $C_{1} + c_{1} + c_{2} + c_{2$

Σ

		Me d sca De 🖣	
C ac ∮T e	Ra d ed C	Obea a C	N C
Sc -ba ed	Rbe adOe e (1966) Ea adP e (1973) Ade aadP e (1980) Sa (1992)	D e (1953) Fe c (1955) Dea (1958) Keefa e (1976) K c (1979) J (Sa Fa c c e) (1984) ^a B e (1986) Re d a dObe a (1987) Ha e (1988) W e (1988) W e (1992) W e (1996)	Pa e(1961) Ma (1965) J (A a a, Ne Y e) (1984) ^a

TABLE 6: Studies by Coaching Mode and Design

e ca -ba ed

ပ

Ka a (2002)

Fa e (1960) W a (1962) Fede a Tada C d a d ea a e B Reo a Office (1978) B ea f C e P ec (1979) R c (1980) S d (1980) Se , Be a d, a d K a (1982) Fa e (1983) Se (1988) Z a (1988) Z a (1988) S edec (1989) S edec (1989) S edec (1999)

> C e-ba ed H ee (1984) La c e e (1985)

	SES fb.9998-7.9998 1.7004 79484019916 269	
,1 -2001	Yea ()	
	Sa eS e ^a (C ac ed/T a.) G ade	

	,	l ed	l ed			led	l ed		ed	(pa
ΙI	ΞI	2	2			2	≥	_	≥	<i>(c)</i>
1985-1986 1987-1988	1988-1989 1989	1995-1996	1991-1992		1965	1970-1971	1977-1978	1983-1994	1988	1985-1986
NY MD. D.C.	PA MD, NJ	NSA	NSA		N	NJ, OH, PA	7 Ne. E €ad ae	CA	СА	ž
e bc(ba) ae(bba)	bcadae ae(bba)	e bcad ae	e bcad ae		bc(aBac, ba,ada)	bc(ba d b ba)	bcad ae	e bc(a ac, ba)	bc(b ba)	e bc(ba)
Σœ	0 1 1 4	Σ	Σ		18	12 a	8	Σ	ო	Σ
1 5	12 5	11 , 12	11 , 12		12	11	1	11	12	.
21/55 200/438	264/535 631/1,132	427/2,086	503/3,144		188/310	288/417	NA	23/35	61/122	16/33
21/55 200/438	264/535 631/1,132	427/2,086	503/3,144		154/265	NA	239/559	23/35	61/122	16/33
Z a (S edec (1989) S (1990)	P e adřc (1999)	B 👬 (2001)	Rad ed de Sc -baedcac • <i>R be a d O e e</i>	(1966)	EaadPe(1973)	дае аааг е (1980)	J (Sa Facc e)(1984)	Sa (1992) C ecacac Z a (-SES a e)	(1988)

M ed ed RN R ∃ ≯ 61/93 9,10,11 1 bc(b ba) 13/27 11 1 ae(b ba Ca c) 42/71 13/27 C e -ba ed c ac H ee (1984) La c e e (1985)

q	G a d Mea	SAT-M	00	D	Ν	IM	AI	đ	ΤP	TS	OA	MH	CI	WC	AC
0	-	-	-	3.5	-	-	-	-	0	-	0	0	-	0	0
a e	-	-	-	15	-	-	0	-	-	-	0	0	0	0	0
a e	-	-	-	4	0	-	-	-	0	÷	0	0	0	0	-
/ a	-	-	-	15	-	-	-	-	-	-	0	0	0	0	0
edec	-	-	-	15	-	-	-	-	-	-	0	0	0	0	0
/ 💞 C d, a d Ma	e 1	-	-	15	-	-	-	-	-	-	-	0	0	0	0
	-	-	-	15	-	-	-	-	-	-	0	0	0	0	0
а	-	-	-	4	-	-	0	0	0	-	0	0	0	0	0
c ede	-	-	-	16	0	-	N	-	-	-	-	0	0	0	0
e a d Keffe	-	0	-	ø	-	0	-	0	0	0	0	0	-	0	0
е (-	0	-	68	-	0	N	-	-	-	0	0	0	0	0
.e adRc	-	-	-	15	-	-	-	-	-	-	0	0	0	0	0
7 • 7 •	-	-	-	15	-	-	-	-	-	-	0	0	0	0	0
a a Yea 1	-	-	0	30	0	-	N	-	-	-	-	-	0	0	0
a a Yea 2	-	-	0	30	0	-	N	-	-	-	-	-	0	0	0
OTE: D=d a fc	ac ac	p q)	e N	a ebee	eda	a a	, e Q	[1990]	(ə ə	, <u> </u>	e ba	U	ΞЩ.	ø	

1
4
4
-
4
4
. 4

	2		:			(:
Sd	Yea	P D	Ma c	Ha d	EIS	Se	Λ
Hee	82	0	0	-	0	-	Q
Fае	87	0	0	0	0	0	2
Ha e	88	0	0	0	0	-	0
W a	88	-	0	0	0	0	0
S edec	89	-	0	0	0	0	0
W ∛,C d,adMa e	89	0	0	0	0	0	0
S	06	-	0	0	0	0	0
Sa	92	0	0	-	0	-	0
Sc ede	92	0	0	0	0	0	0
H e a d Keffe	95	-	0	-	0	0	0
W e	96	0	-	0	0	2	2
Pee adRc	66	-	0	0	-	-	0
B •4	101	-	0	0	0	-	0
Ka a Yea 1	101	-	0	0	0	2	0
Ka a Yea 2	101	-	0	0	0	2	0

 $2.A_{1}$ 1994, $\notin LA_{2} \approx 1$, $\notin LA_{2} \approx 1$, $h \approx 1$,

2. A. 1994, ξ A, γ 1, ξ A, ψ 1, ξ A, ψ 1, ψ A, ψ 1, ψ 1, ψ 1, ψ 1, ψ 4, ψ 4, \psi 4, ψ 4, ψ 4, \psi 4 70¹7.

5. B $\stackrel{*}{\rightarrow}$ $\stackrel{*}{\rightarrow}$

 $L^{1_{0}} \stackrel{\sim}{\downarrow} D.$

 $\begin{array}{c} L & \bullet_{1} & D \\ \hline & & & \\ 8$

(1985).

12. 1. 1. 1. h = 0

A, J, D. ., \mathbf{w} , D. ., \mathbf{w} , D. ., \mathbf{w} , 1980. \mathbf{x}^{\prime} , \mathbf{w}^{\prime} ,

A , A. 1981. Cu * A , . . . 10 f h r American Psychologist 36 (10): 1086-93.

- B * B. 1988. B. British Journal of Mathematical and Statistical Psychology 41:257-78.
 - $---- 1990. \ \mathbf{G} * \mathbf{f} = \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf$

- $\begin{array}{c} \text{Bn} \\ \text{s. B11} \\ \text{$
- $\mathbb{B}_{\mathbf{n}}^{\mathbf{n}}, \mathbb{A}_{\mathbf{n}} = \mathbb{A}_{\mathbf{$
- $\mathbf{B}_{\mathbf{W}}, \mathbf{D}, \mathbf{C}, 2001, \mathbf{M}_{\mathbf{W}} \stackrel{*}{\to} \mathbf{h}_{\mathbf{W}} \stackrel{1}{\to} \mathbf{h}_{\mathbf{W}} \stackrel{*}{\to} \mathbf{h}_{\mathbf{W}} \stackrel$ 14 (1): 10-18.
- B 1. 1
- 2004 . C $_{2}$, γ , γ , γ , γ , γ , γ , 1 ,

- dardized admission examinations: Revised statistical analyses of data gathered by the Boston Regional Office of the Federal Trade Commission.
- Gill, \mathbf{p} , \mathbf{B} , \mathbf{b} , \mathbf{c} ,
- As $_{\rm p}$, 1960. $_{\rm p}$, $_{\rm p$
- $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

- - η^μ, ., C. **,** ., -1995.A* 84 0**,** 49,2 <u>(</u>).3. 30*76 190

 $= \frac{1982.}{10^{10}} \cdot \frac{1}{10^{10}} \cdot \frac{1}{1$

Derek C. Briggs is an assistant professor specializing in quantitative methods and policy analy-