GRAPH NEURAL NETWORKS FOR CAUSAL INFERENCE UNDER NETWORK CONFOUNDING

M¿c ae P Leun[†] Pante ¿s Loupos[‡]

Marc ,

1 Introduction

1 1 11	II I U VA I II I	۹ ۹	1
UVA I X M	1	х У	
1		1 1	11 1
	1	1	i i i
	i i 4	A 1 1	"" " X A " I
	i i i ii	11	

I

1.2 Related Literature

i n o **i K** 1 **i** o A **i n**(**i**, 1

2 Setup

Zi

$$(A, X, \varepsilon, \nu$$
 I II
 $(h_n($ II II
 $h_n($ II II
 II II
 $g_n($
 $g_n($
 II II II II
 II II II
 II II

$$(\mathbf{D}_{i}, \mathbf{X}_{i}')'$$

1 n / 1 I \boldsymbol{A} $\boldsymbol{Y} \quad \frac{1}{1} \quad \boldsymbol{+} \boldsymbol{Z} \quad \boldsymbol{+} \quad \begin{array}{ccc} \boldsymbol{\mathring{Y}} & {}^{\boldsymbol{k}} \boldsymbol{\mathring{A}^{\boldsymbol{k}+1}} \boldsymbol{Z} & \boldsymbol{+} & \boldsymbol{\mathring{Y}} & {}^{\boldsymbol{k}} \boldsymbol{\mathring{A}^{\boldsymbol{k}}} \boldsymbol{\varepsilon}. \\ \mathbf{k} = \boldsymbol{0} & \mathbf{k} = \boldsymbol{0} \end{array}$ Yi $\mathsf{g}_{\mathsf{n}}(\mathsf{i}, D, X, A, arepsilon)$ 1 1 1 Е р 🕽 1 1 1 υI (**Χ**, **Α**, **ν** D-1 $\mathbf{D}_{\mathbf{i}}$ $\mathbf{h}_{\mathbf{n}}(\mathbf{i}, \mathbf{X}, \mathbf{A}_{\mathbf{i}})$ **D**_i 1 Е р 🦻 11 i l D_i Yi $Y_i \quad g_n(\mathcal{D}_{\mathcal{N}(i,K)}\text{, }_i \quad D_i \quad 1 \ W_i' \quad \ \ _i \ ,$ (*X*, *A* K Wi 1 5 1 1 $Y_i(d = g_n(i, d, X, A, \varepsilon).$ $Y_i(d$ Di

arepsilon (X,A) arepsilon arepsilon arepsilon arepsilon arepsilon arepsilon arepsilon arepsilon

A μ p* on 1 U o η_{i} n $\mathbb{N}, \varepsilon \nu X, A$ A (X, A) i U VA i i X_i i U VA ii S \mathcal{N}_{n} i D_S (D_{i i \in S} i i X_S)

 A_{S}

2.1 Related Literature

U VA

$$Y_i \quad g(D_i, X_{i,-i} \quad i \quad D_i \quad X_i.$$

1 11

$$\mathbf{T}_{\mathbf{i}} = \mathbf{f}_{\mathbf{n}}(\mathbf{i}, \mathbf{D}, \mathbf{A})$$
 $\mathbf{W}_{\mathbf{i}} = \mathbf{q}_{\mathbf{n}}(\mathbf{i}, \mathbf{X}, \mathbf{A})$

\mathcal{M}_{n} i

(÷ (| | |

$$\hat{}_{i}(\mathbf{t},\mathbf{t}') = \frac{1}{\hat{\mathbf{p}}_{t}(\mathbf{i},\mathbf{X},\mathbf{A})} \frac{1}{\hat{\mathbf{p}}_{t}(\mathbf{i},\mathbf{X},\mathbf{A})} + \hat{\mu}_{t}(\mathbf{i},\mathbf{X},\mathbf{A}) \\ = \frac{1}{\hat{\mathbf{p}}_{t}(\mathbf{i},\mathbf{X},\mathbf{A})} \frac{1}{\hat{\mathbf{p}}_{t}(\mathbf{i},\mathbf{X},\mathbf{A})} - \hat{\mu}_{t}(\mathbf{i},\mathbf{X},\mathbf{A}) - \hat{\mu}_{t}(\mathbf{i},\mathbf{$$

3.1 Architecture

$$\mathbf{X}_{\mathbf{i}} \qquad \mathbf{X}_{\mathbf{i}} \qquad \mathbf{i} \qquad \mathbf{i}$$

 $\Gamma(\Gamma)$

I

$$\Gamma_1($$
 $\mu($ $(\Sigma(min(max($

1 1

$$S(, \frac{\log(||+1)}{n}, \frac{1}{n} \frac{\mathbf{y}}{|_{i=1}} \int_{j=1}^{\infty} \mathbf{A}_{ij} + 1, || 1, 1.$$

(

A \mathbf{b} **f** $\mathcal{F}_{GNN}(\mathbf{L})$

1

 ropo to n_1 to o n_j n \mathbb{N} n to on ,

1

$$\mathbf{t}_{t} \mathbf{t}^{t} (\mathbf{i} \quad \frac{\mathbf{1} \mathbf{T}_{\mathbf{i}} \quad \mathbf{t} (\mathbf{Y}_{\mathbf{i}} \quad \boldsymbol{\mu}_{t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})}{\mathbf{p}_{t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})} + \boldsymbol{\mu}_{t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A}) \qquad \frac{\mathbf{1} \mathbf{T}_{\mathbf{i}} \quad \mathbf{t}' (\mathbf{Y}_{\mathbf{i}} \quad \boldsymbol{\mu}_{t^{1}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A}))}{\mathbf{p}_{t^{1}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})} \quad \boldsymbol{\mu}_{t^{1}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A}) \qquad (\mathbf{t}, \mathbf{t}', \mathbf{t}', \mathbf{t}')$$

$$\mathbf{i} \quad \mathcal{M}_{\mathbf{n}} \qquad \mathbf{i} \qquad \mathbf{i$$

A $\boldsymbol{\mu}$ p\$ onMn p4 \boldsymbol{u} on_{\boldsymbol{\mu}}nN, i \mathcal{N}_{n} , nd0, 1 ^ n, ||Y_i(d | p X, A M)on_{\boldsymbol{\mu}}i__, - (0, 1 \boldsymbol{u}) $\hat{p}_t(i, X, A, p_t(i, X, A | _, - n))$ n

		$_{\mathbf{t},\mathbf{t}^{1}}(\mathbf{i})$	n i=1						
7	1	1	<u>م</u>	146	هم.	16	146	هم	16

or λ $n \sim_{\mathbf{t},\mathbf{t}^1} (\mathbf{i} \not \mathbf{x})$ $n (\mathbf{t},\mathbf{t}' n)$ $n \text{ on } o \circ_{\mathbf{t},\mathbf{t}^1} (\mathbf{i} \ \mathbf{i} (\mathbf{t},\mathbf{t}')$ | $\mathbf{Y}_{\mathbf{i}} = \mathbf{T}_{\mathbf{i}} = \mathbf{t}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$

^2 / // // / / / /

5 Approximate Sparsity

A s I L $(X_{\mathcal{N}(\mathbf{i},\mathsf{L})})$

6.2 Nonparametric Estimators

A
$$\Gamma_2($$

1	1	1
1	1	1

		L = 1			L = 2			L = 3	
	6,76,76,7 7,7,7	6,76,76,7 7:7:7	6,76,76,7 7,7,7	6,76,76,9 7,7,7	6,76,76,9 7,7,7	6,16,16, 9 7,7,7	6,76,76,7 7,7,7	6,76,76,7 7,7,7	6,86,96,9 7, 7, 7
$\hat{\tau}(1,0)$	649 649 7 7 649	араара 7 7 ара	- <mark>649 649 - 649</mark> 7 - 7 - 7 - 649 -	нул нул 7 — 7 нул	нуй нуй У У нуй	649 649 7 7 649	· · · ·	нул нул 7 - 7 нул	• • • • • • • • • • • • • • • • • • •
Ç CL	649 7 649 7 649	(ም.ም. 1971) ም. 1971)	ିନ୍ଦ ନ୍ଦ ନ୍ଦ ନ୍ଦ	in in n in n in n	₩ ₩ ₩ ₩	(파. 파. 1997) 파 파 파	ίψ 1 1 1 1 1 1	₩ ₩₩₩ ₩ ₩	ίψι φ / ψ / ψ / ψ
	y y yy y yy y yy y	y y hy hy hy hy t y	y y No y No no no y Y y	y y hy y hy hyhy y y	/ *** ** /	у на на на х) ••• •• /)))))))))	7 7 1949 1949 1949
W II. CI.	ыр 17 17 17 17					х ' ' • •	х ' ' • •		** ** **

si u ations, he esti and is (1,0) = 0, treated \approx

A L 2 / / / / / L 2,4,8,... L 2 / / L 1 / 1

7.1 Comparison with He and Song (2024)

Leung and Loupos

1

¶ A

5

 $\mathbf{T}_{\mathbf{i}}^{(1)}$

11

1

	ADM			C	INN		GLM					
			Layer		Layer	Layer		Order		Order	Ord	dei
Leader	case											
\mathbf{G}_{ee}						 						•
\mathbf{G}_{sc}						 						8
\mathbf{G}_{all} Leader	ees adopter	€€ case								88 5	** **	•
G_{ee}	e · 5					 					6 - 5 6 6	
G_{sc}	e ,		665			 						
G _{all} Adopte	€ ' š er case					 	• •		• '		6 5 6 6	• (
G_{ee}	•					 					e , e e	•
${\sf G}_{sc}$	e ,		CC 5			 						
G_{all}	6 1 5					 					e - e e	

i i i i 11 i i 11

A Additional Results on GNNs

i i i i i

A.1 WL Function Class

1 Ĩ 1 I 5 1 L nnI 1 1 I Í 1 1 I 1 Ĺ 1 1

(X, A, (X', A') f $f(X, A \neq f(X', A')$

i i i i i i i i i i i i i i i

1 1

11

A.2 Disadvantages of Depth

ۇپ

i i i

 $(\mathbf{D}'_{\mathbf{i}} \mid \mathbf{a}, \mathbf{b}$

I

 $| | Y_i \mathbf{1}_i(\mathbf{t} \ \mathbf{X}, \mathbf{A}) | | Y'_i \mathbf{1}_i(\mathbf{t} \ \mathbf{X}, \mathbf{A}) | | | | \mathbf{n}(\mathbf{s} + \Lambda_n(\mathbf{i}, \mathbf{s}, \mathbf{n}(\mathbf{i}, \mathbf{s})) | \mathbf{n}(\mathbf{s}) | \mathbf{n}(\mathbf{s$

$$\begin{split} \|R_{1}\|_{n} (\mathbf{s} + \Lambda_{n}(\mathbf{i}, \mathbf{s} n)(\mathbf{i}, \mathbf{s} - \mathbf{n}, \mathbf{s}) &= \\ \|R_{1}\|_{n} (\mathbf{s} + \Lambda_{n}(\mathbf{i}, \mathbf{s} n)(\mathbf{i}, \mathbf{s} - \mathbf{n}, \mathbf{s}) &= \\ \|\mathbf{r}\|_{n} (\mathbf{r}, \mathbf{r}) \|\mathbf{r}\|_{n} (\mathbf{r}, \mathbf{r}) \|\mathbf{r}\|_{n} (\mathbf{r}, \mathbf{r}) &= \\ \|\mathbf{r}\|_{n} (\mathbf{r}, \mathbf{r}) \|\mathbf{r}\|_{n} \|\mathbf{r}\|_{n} (\mathbf{r}, \mathbf{r}) \|\mathbf{r}\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_{n} \|\mathbf{r}\|\|_$$

$$\mathbb{R}^d$$
 (f f \mathcal{L}_d

 $\mathcal{P}_{\mathbf{n}}(\mathbf{h},\mathbf{h}';\mathbf{s}) = (\mathbf{H},\mathbf{H}':\mathbf{H},\mathbf{H}' - \mathcal{N}_{\mathbf{n}},\mathbf{H} - \mathbf{h},\mathbf{H}' - \mathbf{h}', \mathbf{A}(\mathbf{H},\mathbf{H}' \geq \mathbf{s}).$

$$| (\mathbf{f}(\mathbf{Z}_{\mathbf{H}},\mathbf{f}'(\mathbf{Z}_{\mathbf{H}^1}) - \mathbf{C}\mathbf{h}\mathbf{h}'(\|\mathbf{f}\|_{\infty} + (\mathbf{f}(\|\mathbf{f}'\|_{\infty} + (\mathbf{f}' - \mathbf{n}(\mathbf{s}')))))) | \mathbf{f}(\mathbf{f}') - \mathbf{h}(\mathbf{f}') | \mathbf{f}(\mathbf{f}') - \mathbf{h}(\mathbf{f}') | \mathbf{f}(\mathbf{f}') | \mathbf{f}(\mathbf{f$$

$$\mathsf{D}^{(\mathsf{s})}_{\mathsf{i}} = \mathsf{h}_{\mathsf{n}(\mathsf{i},\mathsf{s})}(\mathsf{i}, X_{\mathcal{N}(\mathsf{i},\mathsf{s})}, A_{\mathcal{N}(\mathsf{i},\mathsf{s})},
u_{\mathcal{N}(\mathsf{i},\mathsf{s})})$$
 .

 $\boldsymbol{D}_{\mathcal{N}(\boldsymbol{i},\boldsymbol{s}^{1})}^{(s)} \quad (\boldsymbol{D}_{\boldsymbol{j}}^{(s)} \ _{\boldsymbol{j} \in \mathcal{N}(\boldsymbol{i},\boldsymbol{s}^{1})} \)$

$$\begin{array}{ll} 1_{i}^{(s)}(t & 1 \ f_{n(i,s/2)}(i, D_{\mathcal{N}(i,s/2)}^{(s/2)}, A_{\mathcal{N}(i,s/2)} & t \ , \\ Y_{i}^{(s)} & g_{n(i,s/2)}(i, D_{\mathcal{N}(i,s/2)}^{(s/2)}, X_{\mathcal{N}(i,s/2)}, A_{\mathcal{N}(i,s/2)}, \varepsilon_{\mathcal{N}(i,s/2)} \ , \\ \mathsf{Z}_{i}^{(s)} & 1_{i}^{(s)}(t \ (\mathsf{Y}_{i}^{(s)} \ \mu_{t}(i, X, A \) \\ \end{array}$$

$$A \qquad (\mathbf{Z}_{i}^{(s/2,)})_{i \in \mathbf{H}} \quad (\mathbf{Z}_{j}^{(s/2,)})_{j \in \mathbf{H}^{1}} \quad \mathcal{F}_{\mathbf{n}}$$
$$| (, \mathcal{F}_{\mathbf{n}} | | (^{(s/2)}, \mathcal{F}_{\mathbf{n}} | + | (^{(s/2)}, ^{(s/2)} \mathcal{F}_{\mathbf{n}} |$$
$$2 \| \mathbf{f}' \|_{\infty} \quad || \quad {}^{(s/2)} | \quad \mathcal{F}_{\mathbf{n}} \quad + 2 \| \mathbf{f} \|_{\infty} \quad || \quad {}^{(s/2)} | \quad \mathcal{F}_{\mathbf{n}}$$

 $2 \mathbf{h} \|\mathbf{f}'\|_{\infty} \quad (\mathbf{f} + \mathbf{h}' \|\mathbf{f}\|_{\infty} \quad (\mathbf{f}' \max_{\mathbf{i} \in \mathcal{N}}$

$$\hat{\mathbf{p}}_{t}(\mathbf{i}, \mathbf{X}, \mathbf{A}) = \begin{bmatrix} \mathbf{i} & \mathbf{C}, \mathbf{C}' & 0 & |\mathbf{R}_{1t}^{2} \end{bmatrix} \mathbf{K}$$

$$\frac{1}{\mathsf{m}_{\mathsf{n}}} \frac{\mathbf{\ddot{y}}}{\mathbf{i} \in \mathcal{M}_{n}} \mathbf{\ddot{y}} = \begin{bmatrix} \mathbf{'} & \mathbf{'} & \mathbf{'} \\ |(\mathbf{Y}_{\mathsf{i}} \mid \mathbf{\mu}_{\mathsf{i}} \mid (\mathbf{Y}_{\mathsf{j}} \mid \mathbf{\mu}_{\mathsf{j}} \mid \mathbf{D}, \mathbf{X}, \mathbf{A}) \mathbf{I}_{\mathsf{i}}(\mathbf{t} \mid \mathbf{1}_{\mathsf{j}}(\mathbf{t} \mid \mathbf{I}) \mathbf{I}_{\mathsf{i}}(\mathbf{t} \mid \mathbf{I}) \mathbf{I}_{\mathsf{$$

 $\hat{p}_t(i, \mathbf{X}, \mathbf{A})$

$$\Delta_{\mathbf{i}}(\mathbf{t} \quad (\hat{\boldsymbol{\mu}}_{\mathbf{t}}(\mathbf{i} \quad \boldsymbol{\mu}_{\mathbf{t}}(\mathbf{i} \quad \boldsymbol{p}_{\mathbf{t}}(\mathbf{i} \quad \mathbf{1}_{\mathbf{i}}(\mathbf{t}$$

1 Bron th n https //towardsdatascience com/do/we/need/deep/graph/neural/networks /be 2d ec c A Bram, Conn h i oh _ - * n X ℓ X C n Z, h r C n n Bram 1 А А ٧I Crno, Alo, DCthio, MIDhraEDaaCna n ohn 1 1 ono ou n -*** oh /1 , C h, D B h h, A, n 1 Cor a А А V٢ D root M ouno An Ao onۇپ. 1 В rr I 11 l oun o ono 5 Dhhi, Coh, Arnt Y Basa n X Br on X n X 00 00 \mathbf{E} n 💐 r, C, M pon, n B nn U A 1 1 X n X Ø 5 1 Frr M L А X n X 🖉 ⊾ n≛ n Mk r L _ **k م**ے ono

F, Man In n X n X Ø Ø For 🖄 r, 🚜 E Asro 🛼 n F 🕅 🐁 🖡 1 1 o'un o A n A o on 46 🛶 هم ا ro 🔥 🕅 1 A I A I L X n ong 0 0 no u o o n \checkmark ormati, Martino , n ht 11 U / A 0 -€U.

h n	n B M	I	1	▼
Ī	1 11	А		

0	nŋ		l l	X n
X	Ø	00 2		

Zop	M				I	Al	All Y	X	n
X		Ø	0	5					