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utilize the model of approximate neighborhood interference (ANI) proposed by Leung

(2022a), which posits that interference in the outcome stage decays with network path

distance. Leung shows that ANI allows for endogenous peer effects but focuses on

a setting with randomized assignment. In observational settings, it stands to reason
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We provide conditions under which the doubly robust estimator is approximately

normally distributed as the network size grows large. This type of result is well known

for i.i.d. data (e.g. Farrell, 2018), but it is nontrivial to extend to our setting since

we allow for a complex form of network dependence. For example, asymptotically

linearizing the doubly robust estimator requires a new argument due to dependence,

and application of an appropriate CLT requires verification of a high-level weak de-

pendence condition under a nonparametric model with outcome and selection stages

both governed by simultaneous-equations models. For inference, we utilize a network

HAC estimator due to Kojevnikov et al. (2021) and propose a new bandwidth that

adjusts for estimation error in the first-stage machine learners.

We substantiate the theory in a simulation study and empirical application to

microfinance diffusion. The simulations demonstrate that the use of GNNs can sub-

stantially reduce bias relative to conventional choices of network controls even with

shallow architectures. The empirical illustration revisits the microfinance diffusion

application of He and Song (2024). We show how our estimands can capture comple-

mentary aspects of diffusion relative to their “average diffusion at the margin” mea-

sure. Our theoretical framework allows for more complex diffusion processes without

requiring the econometrician to prespecify the maximum number of within-period

rounds of diffusion. Finally, by including richer controls that account for network

confounding, we find more attenuated diffusion effects.

1.2 Related Literature

There is a large literature on interference, much of which focuses on randomized

control trials (e.g. Athey et al., 2018; Li and Wager, 2022; Toulis and Kao, 2013).

We contribute to a growing recent literature on unconfoundedness, much of which

operates in a partial interference setting where units are partitioned into disjoint

groups with no interference across groups (e.g. Liu et al., 2019; Qu et al., 2022).

Studying a network interference setting, Veitch et al. (2019) propose to use “node

embeddings” as network controls, which are learned functions of the graph. Since

node embeddings can be obtained from a variety of methods, there remains the issue

of justifying a particular choice of network controls. GNNs can be interpreted as a

method of estimating node embeddings (see §3), and our behavioral model provides

justification for their use. We defer to §2.1 a more detailed review of the literature
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3.1 Architecture

The standard GNN architecture consists of nested, paramete
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study or later.6

7.1 Comparison with He and Song (2024)
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labels for each unit) according to the following recursive p
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