
- 1. (20 pts) Parts (a) and (b) are not related.
 - (a) For $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{D}{2-x}$, identify the composite function (f-g)(x) and its domain.

Express the domain in interval form.

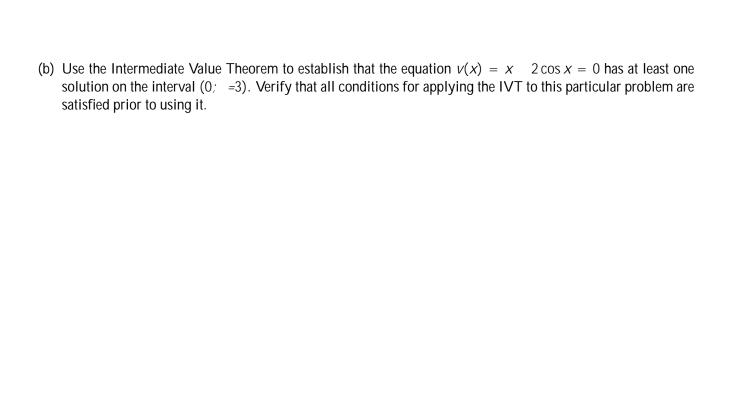
(b) The graphs below depict the functions y = p(x) and y = q(x), where q is a transformation of p of the form q(x) = ap(bx). Find the values of a and b.

- 2. (30 pts) Evaluate the following limits. Support your answers by stating theorems, definitions, or other key properties that are used.
 - (a) $\lim_{x \to 0} \frac{\sin(5x)}{x^2 + 2x}$

(b)
$$\lim_{x/2} \frac{P_{\overline{X}+1}}{X^2+X} = \frac{P_{\overline{3}}}{6}$$

(c)
$$\lim_{x \to 0} x^4 \cos \frac{1}{2x}$$

- 3. (30 pts) Consider the rational function $r(x) = \frac{3x^2 + 21x + 30}{x^2 + 2x + 15}$.
 - (a) Identify all values of x at which r(x) is discontinuous. At each such x value, explain why the function is discontinuous there.


(b) Identify the type of discontinuity associated with each x value identified in part (a). Support those classifica-

(c)	work in part	lation of each ve (b).	rtical asymptote	of $y = r(x)$, if a	iny exist. Suppor	your answer in t	erms of you

- 4. (20 pts) Parts (a) and (b) are not related.
 - (a) For what value of a is the following function u(x) continuous at x = 4? Support your answer using the definition of continuity, which includes evaluating the appropriate limits.

$$u(x) = \begin{cases} \frac{8}{x^2 + 16} & x < 4 \\ \frac{3}{x^2 + 16} & x < 4 \end{cases}$$

Your Initials	
---------------	--

ADDITIONAL BLANK SPACE

If you write a solution here, please clearly indicate the problem number.